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Applications of Hiickel molecular orbital theory to planar aromatic hydrocarbons have been of enormous conceptual 
value to organic chemistry. The success of 2-dimensional Hiickel theory is mainly a result of molecular connectivity 
or topology. But most of chemistry is 3-dimensional. In the widely applied 3-dimensional extended Hiickel method, 
much of the significance of topology is lost or at least obscured in choices of bond distances, Coulomb integrals, 
and calibration parameters. We present a 3-dimensional version of Hiickel theory developed directly from the 
approximations of simple Hiickel theory plus a few additional assumptions. The significance of molecular topology 
is retained. The 3-dimensional Hiickel theory we describe is designed specifically for polyhedral molecular clusters. 
Following an exposition of the method, we present applications to specific classes of clusters for which results can 
be compared with those from experiment and from ab initio molecular orbital calculations. For the closo-boranes, 
BnHn2-, the 3-dimensional Hiickel model correctly chooses experimentally observed structures from a large set of 
plausible polyhedral structures. The results also confirm the well-known rule of n + 1 skeletal electron pairs in the 
closo-boranes. For a group of transition metal clusters, the model provides a rationalization for the empirically 
observed numbers of cluster bonding electrons. 

Introduction 

Simple Hiickel theory of 2-dimensional or planar molecular 
systems has been of enormous conceptual value in organic 
chemistry.1,2 Compared to the large number of planar conjugated 
organic examples, planar inorganic molecules and ions are 
relatively few, but even these have been studied to conceptual 
advantage with simple Hiickel  method^.^-^ 

Applications of simple molecular orbital theory to three- 
dimensional structures have been widely done at the extended 
Hiickel Although extended Hiickel theory is sometimes 
referred to as 3-dimensional Hiickel theory: this model differs 
from simple 2-dimensional Hiickel theory by much more than an 
additional spatial dimension. The input for a 2-dimensional 
Hiickel calculation could hardly be simpler: the number of atoms, 
the number of P electrons, and an adjacency matrix. The number 
of atoms counts the number of atomic orbitals in the basis set and 
thereby establishes the number of molecular orbitals for the 
system. The number of r electrons is the number of electrons 
delocalized over the planar, 2-dimensional structure in MOs that 
are antisymmetric with respect to reflection in the molecular 
plane. The adjacency matrix specifies whether or not we have 
drawn a bond between each pair of constituent atoms. Each 
element in the matrix is either unity, if a bond is present between 
two indexed atoms, or zero, if no bond is present. Thus, the 
adjacency matrix contains information about molecular connec- 
tivity or topology. This realization has been the basis for a brilliant 
reformulation of 2-dimensional Hiickel theory in terms of graph 
t h ~ r y . ~ J ~  Hydrogen atoms and other substituents are completely 
ignored. Coulomb and resonance integrals CY and B, which are 
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developed in the theoretical framework, do not appear in the 
calculations, at least for hydrocarbons. Heteroatoms can be 
included by specifying changes from still unspecified values of 
hydrocarbon Coulomb and resonance integrals, but their sig- 
nificance is mainly in the sign and relative size of thosevariations 
and not in the actual values chosen. Atomic orbital overlaps are 
completely neglected. 

The extended Hiickel input information is quite different. 
Instead of giving only connectivity information through an 
adjacency matrix, one must specify actual distances between 
atoms, usually by Cartesian coordinates of atomic positions. 
Coulomb integrals are given the values of atomic valence state 
ionization potentials, and these quantities are averaged and 
combined with distance-dependent overlap integrals to calculate 
resonance integrals between all pairs of atomicorbitals. Coulomb, 
resonance, and overlap integrals are all directly involved in the 
calculation. Hydrogen atoms and other substituents are routinely 
included. The results of extended Hiickel calculations are 
expressed in conventional energy units, which have the unfortunate 
effect of lending the results undue quantitative significance. 

The fact that the extended Hiickel method does not include 
specific assignments of bond locations might be considered as an 
advantage. In practice, it is also a limitation. Total energies 
turn out to be rather sensitive to actual choices of interatomic 
distances, and while this leads to the possibility of determining 
structures by varying interatomic distances to minimize the total 
energy, molecular structures determined through geometry 
optimization by extended Hiickel calculations are frequently 
disappointing and occasionally even molecular shapes and relative 
energies turn out to be wrong. As an alternative, standard bond 
distances and angles are sometimes used as input parameters for 
comparisons through series of related molecules? but again the 
actualvalues of structural parameters chosen are open tocriticism. 

Qualitative models of the electronic structures of clusters have 
received considerable attention in recent years and several 
excellent reviews are available. Therefore, we mention in the 
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3-Dimensional Hiickel Theory for Cluster Compounds 

following only those models that provided the clearest inspiration 
for development of the model that we present here. In 1971, 
Wade formulated electron-counting rules for polyhedral clusters.13 
These rules specify that an n-atom closed polyhedron contains n + 1 pairs of delocalized electrons that account for bonding among 
the atoms that compose the framework or skeleton of the 
polyhedron. The n + 1 pairs are often referred to as skeletal 
electron pairs. 

In 1977, King and Rouvray introduced a graph-theoretical 
model, based on a simple Hiickel analysis, for the interpretation 
of bonding in polyhedral boranes, carboranes, and metal ~1usters.l~ 
Consider a structure in which n atoms or vertices are connected 
to form a polyhedron. Each atom contributes four valence AOs, 
one s and three p AOs, to the basis set for a total of 4n AOs. 
Imagine one of the p AOs at each vertex oriented such that it 
points along an axis running toward the center of the polyhedron. 
Call this the radial AO. The other two p AOs are perpendicular 
to this axis and are tangential to the surface of an imaginary 
sphere that encloses the polyhedron. Call these the tangential 
AOs (1). By combining the s A 0  and the radial p AO, one can 

I 
radial ! ! 

intornal 

1 2 

form two sp hybrid orbitals: an internal hybrid that points toward 
the center of the polyhedron and an external hybrid that points 
away from the polyhedral surface (2). The external hybrids can 
be used to form normal two-electron bonds to ligands or to hold 
unshared electron pairs. Since the n external hybrids are now 
engaged in localized, external bonding or as lone pairs, they need 
no longer be considered. Therefore, the total number of AOs 
available to describe polyhedral bonding reduces from 4n to 3n. 

If we assume no interactions between the set of n internal 
hybrids and the set of 2n tangential p AOs, the 3n X 3n adjacency 
matrix breaks down into ann  X n matrix for the internal hybrids 
and a 2n X 2n matrix for the tangential orbitals. King and 
Rouvray assumed that the n internal hybrids are all neighbors 
or that they all combine or interact with each other with equal 
weight regardless of their location relative to one another in the 
polyhedron. This, of course, is not true for sp hybrids as we know 
them, but the assumption leads to a great simplification. The 
adjacency matrix specifying equal interactions among the internal 
hybrids will have 0's on the main diagonal and 1's elsewhere. This 
is the adjacency matrix for the complete gruph, K,,, the eigenvalues 
of which are well-known. They include a single bonding MO 
with energy -(n - 1)fl and n - 1 degenerate antibonding MOs, 
each with energy +fl. The energies of these n MOs sum to zero: 

-(n - 1)/3 + ( n  - l)(@ = 0 

bonding antibonding 
The unique bonding MO is called the bonding core orbital. Among 
the remaining 2n MOs made from combinations of the 2n 
tangential p AOs, half or n will be bonding and half will be 
antibonding. Therefore, the total number of bonding MOs is n 
+ 1. This result of King and Rouvray is widely regarded as the 
first theoretical justification of the empirical observation that 
stable polyhedral boranes and carboranes are those that possess 
n + 1 pairs of skeletal electrons. 
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10 P I -P~ 1b P.-P. 1~ ~ y - ~ y  1d Ps-P .  
Figure 1. Orientations of orbitals in standard integrals. The orbitals px 
and py are tangential orbitals. The radial orbital is represented h m  as 
PZ * 

As described above, the internal orbitals are sp hybrids that 
point toward the center of the polyhedron and are therefore 
functionally different from the unhybridized p AOs that make 
up the set of tangential AOs. In any 3-dimensional Hiickel 
calculations that might actually be carried out, the functional 
forms are never used. For convenience in our development that 
follows, we represent the internal hybrids as unhybridized p AOs. 
But we might wish to recognize the difference between internal 
radial and tangential orbitals by attributing to them different 
Coulomb integrals. 

Another elegant qualititative description of bonding in poly- 
hedral clusters has been developed by Stone, whose tensor surface 
harmonic theory derives skeletal molecular orbitals as expansions 
of vector surface harmonic functions.1s This theory is based on 
the free-electron model derived from the quantum-mechanical 
problem of a particle on the surface of a sphere. Stone was also 
able to give theoretical justification for the electron count of n 
+ 1 skeletal electron pairs in stable polyhedral molecules. 
However, it should be mentioned that the count of n + 1 skeletal 
electron pairs depends largely on the interaction between radial 
and tangential orbitals. If this interaction is neglected, Stone's 
theory gives a result that the number of bonding orbitals is larger 
than n + 1 for n 1 9. Other treatments have had the same 
problem of additional bonding orbitals when radial-tangential 
interaction is not considered. Fowler and Porterfield have 
developed an extended tensor surface harmonic theory to avoid 
incorrect orbital degeneracies in Stone's tensor surface harmonic 
theory.I6 Their use of the one-electron Hamiltonian and explicit 
calculation of radial-tangential interaction confirmed the qual- 
itative conclusions of Stone. 

1DimenSional Hiickel Theory for Clusters 

A 3-dimensional Hiickel theory for polyhedral clusters can be 
developed from the usual Hiickel approximations and some 
additional assumptions. 

A. Polyhedral Orientation and Basis Set. We assume we are 
considering a polyhedral structure composed of n atoms or vertices 
which are connected to each other by bonds or edges. Each vertex 
may carry an external ligand or lone pair of electrons. These 
may be viewed as part of the vertex, and we will not consider their 
contribution to polyhedral bonding. Each vertex provides three 
of its four valence orbitals to be involved in cluster bonding: an 
internal or radial orbital, denoted by pz in Figure 1 ,  and two 
tangential orbitals, shown as px and pv. The fourth valence is an 
external radial orbital which forms a localized bond with an 
external ligand or carries a lone pair of electrons. Since the 
external orbitals do not directly affect cluster bonding, they are 
neglected in this 3-dimensional Hiickel theory for clusters. Thus 
there is a basis set of 3n AOs (xr)  from which a set of 3n MOs 
(&} may be constructed as linear combinations of the AOs: 4t 
= ccr,xr. The terms radial and tangential are related to the 
choice of the local coordinate system for each vertex and will be 
described below. 

B. H&kelApproximatiom. The development of Hiickel theory 
involves three basic types of integrals: A 0  overlap, S; Coulomb, 
a; resonance, fl:  

(15) Stone, A. J. Inorg. Chem. 1981, 20, 563. 
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In this model, normal Hiickel approximations hold. All AOs are 
normalized to unity but overlap integrals between different AOs 
are taken as zero: 

1, i = j  
{o i + j  sij = 

In the Hiickel treatment of planar conjugated molecules, the 
Coulomb integrals ai are the same for all atomic orbitals, ai = 
a, and consequently a is often taken as the zero of energy, or a 
= 0. On this scale, all MOs with negative energies are bonding 
and those with positive energies are antibonding. In 3-dimensional 
Hiickel theory we wish to distinguish between Coulomb integrals 
for radial and tangential orbitals. Therefore we designate (YR as 
the coulomb integral for radial orbitals and CYT as the coulomb 
integral for tangential orbitals. To readjust the zero of energy 
so we can interpret MOs as either bonding or antibonding by the 
sign of the orbital energy, we require (YR + 2aT = 0, where (YT 

is doubly weighted to account for the fact that there are twice 
as many tangential orbitals as there are radial orbitals. We can 
express the difference between the two Coulomb integrals as a 
function of a standard resonance integral 0: 6a = (YR - (YT = kj3 
where k is an adjustable parameter. 

The resonance integral Bi, between bonded or adjacent vertices 
i and j is one of four standard types if the orientations of the AOs 
correspond to one of the four standard combinations shown in 
Figure 1: radial type (Figure la), denoted by 81; tangential u 
type (Figure 1 b), 82; tangential ‘K type (Figure IC), j33; and radial- 
tangential u type (Figure Id), &. For convenience, we assume 
hereafter 81 = / 3 ~  = j33 = j34 = j3. Resonance integrals for other 
orientations depend on the local coordinate system described 
below. As in 2-dimensional Hiickel theory, gij = 0 for all cases 
for which AOs i and j are not on neighboring atoms. 

C. Local Coordinate System. The local coordinate system on 
each vertex is set such that its z axis projects outwardly from the 
center of the polyhedron and its x axis points toward the z axis 
of one of its neighbors. Although this choice of local coordinate 

system is not unique, the many different possible choices give the 
same result. Under this definition pz AOs are equivalent to radial 
orbitals and px and pu AOs are tangential orbitals. Meanwhile, 
assume that all neighboring vertices are equally spaced on the 
perimeter of a circle centered on our atom of choice. Suppose 
vertex i has I neighbors (labeledj,, m = 1, ..., l) around it. Then 
we could rotate 27r(m - 1)/l about the z axis of the central vertex 
i so that its x axis points to each vertex j,,, sequentially starting 
from vertex j l .  Figure 2 shows such a transformation. 

Figure 2. Polyhedral vertex i surrounded by n adjacent vertices j l , j2 ,  ..., 
j n  arranged around i at equal angles. 

P. 

Figure 3. General orientations of px and py orbitals on vertices i and j .  

The resonance integrals can be expressed as follows: 

where eij and e,, are the phase angles defined in Figure 3. For 
the regular polyhedra such as octahedron, cube, and icosahedron, 
the equiangular assumption is exact, but in other structures it is 
only approximate. The assumption may be rather poor for 
polyhedra that contain square or pentagonal faces. To make the 
choice of phase angles somewhat less arbitrary, we introduce a 
structural model that wecall thedeltahedral frame. For structures 
containing square or pentagonal faces, we cap each such face 
with a dummy atom to produce a deltahedron and we use this 
deltahedral frame for the purposes of calculating phase angles 
between tangential orbitals. The deltahedral frame will allow us 
to extend the 3dimensional Hiickel method to treat nido, arachno, 
and nonpolyhedral cluster shapes. The dummy atoms serve only 
to establish local coordinates, and no dummy atom atomic orbitals 
are involved in energy calculations. 

These procedures have been programmed in FORTRAN to 
run on an IBM PS/2 Model 50 computer. The program will be 
made available to the scientific community through other channels. 

Applications to the c1omBoranes 
The closo-boranes, BnHn2-, n = 5-1 2, constitute a series of ions 

with elegant polyhedral forms.” Although the n = 5 member of 
the seria has never been prepared, the corresponding isoelectronic 
and presumably isostructural closo-carborane CzB3Hs is known 
and it has the shape of a trigonal bipyramid. B5Hs2- is expected 
to have the same shape. The known closo-borane structures are 
all deltahedra, polyhedra whose faces are all triangles. The 
preference for triangles can be rationalized from arguments based 
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Table I. 3-Dimensional Hiickel Total Energies (in Units of j3) for B,H,” in Various Polyhedral Forms 

Inorganic Chemistry, Vol. 32, No. 22, 1993 4703 

polyhedron size, n polyhedral form no. of bonds no. of bonding orbitals tot. energy 

6 

7 

5 trigonal bipyramid 

square pyramid 

octahedron 

trigonal prism 

pentagonal pyramid 

pentagonal bipyramid 

8 

9 

10 

capped octahedron 

capped trigonal prism 

bidisphenoid 

bicapped trigonal prism 

square antiprism 

cube 

tricapped trigonal prism 

capped square antiprism 

capped cube 

tridiminished icosahedron 

bicapped square antiprism 

9 

8 

12 

9 

10 

15 

15 

13 

18 

17 

16 

12 

21 

20 

16 

15 

24 

6 

7 

7 

9 

8 

8 

9 

10 

9 

10 

10 

12 

10 

11 

-17.0781 

-16.oooO 

- 2 2 . m  

-17.5083 

-17.3552 

-26.3521 

-25.1894 

-21.2532 

-30.4986 

-29.2946 

-26.7701 

-21.oooo 

-34.1375 

-33.1548 

-27.45 12 

-27.3801 

-39.3 190 
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Table I (Continued) 

Zhao and Gimarc 

polyhedron size, n polyhedral form no. of bonds no. of bonding orbitals tot. energy 
sphenocorona 22 12 -36.5257 

bidiminished icosahedron 20 13 -34.2152 

bicapped cube 20 12 -33.8892 

11 octadecahedron 21 12 -43.3669 

scarabheptadecahedron 26 12 -42.3209 

capped pentagonal antiprism 25 13 -41.0132 

pentacapped trigonal prism 

regular icosahedron ( r h )  

27 15 -39.594 1 

12 30 13 -48.2148 

icosahedron (&) 30 13 47 .2381 

cuboctahedron (4) 24 

25 

13 

15 

-41.4249 

40.7118 

on bond energies and Euler’s theorem. More bonds between atoms 
should increase the stability of the molecule. If a polyhedral 
cluster had a square face, then an additional bond or edge would 
close the square into two fused triangles, giving a more stable 
structure. All larger polygons can be subdivided into triangles 
by adding edges. But the triangle can be subdivided no further 
so the triangle represents the ultimate in edge-forming capability. 
Euler’s theorem, e = n + f - 2, relates numbers of edges e, vertices 
n, and facesf. For a given n, more faces give more edges. 

Perhaps the most significant test of the 3-dimensional Hiickel 
method is whether for a given n it can correctly select the known 
structure from among a set of plausible polyhedral structures. 

Table I contains the total energies of various polyhedral forms 
for B,,Hn2- calculated by the 3-dimensional Hiickel method. The 
B,,H,,*- polyhedra contain n + 1 skeletal electron pairs. For each 
n, we have calculated two or more polyhedral structures. In each 
case we have chosen, besides the known structure, one or more 
additional structures proposed by Fuller and Kepert, who predicted 
relative energies of polyhedral structures using an empirical 
potential model.l8 In each case, n = 5-12, the 3-dimensional 
Hiickel method correctly gives the lowest total energy to the 
experimentally known or expected shape. Furthermore, the lowest 
energy structure for each n has n + 1 bonding MOs that are 
completely occupied by electrons while all antibonding MOs are 
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Figure 4. Ratio of total energy E to polyhedral size n as a function of 
n for B,Hn2-from (a) ab initio calculations and (b) 3-dimensional Hiickel 
theory. 

vacant, confirming the n + 1 cluster electron pair rule. For each 
n, the lowest energy structure is also the one with the largest 
number of polyhedral bonds or edges, following the rule that the 
most stable structure should have the largest number of edges or 
faces, although there are a few exceptions. For n = 7, 1 1 ,  and 
12, two structures have the same maximum number of bonds and 
the 3-dimensional Hiickel method correctly gives the lower energy 
to the known structure. Generally, structures with the same 
numbers of bonds have similar energies. There are a few cases 
in which a structure with fewer bonds has a lower energy than 
one with more bonds. For n = 6, the trigonal prism with 9 bonds, 
has lower energy than the pentagonal pyramid, with 10 bonds. 
For n = 1 1 ,  the pentacapped trigonal prism, 27 bonds, has higher 
energy than structures containing 25 and 26 bonds. For n = 12, 
the cuboctahedron, 24 bonds, has lower energy than the bicapped 
pentagonal prism, 25 bonds. 

We can compare reuslts of 3-dimensional Hiickel theory with 
those of geometry-optimized ab initio SCF MO calculations at 
the STO-3G 1e~el . l~  Our first comparison is of the quantity -E/ 
n, the total energy of the ion divided by the number of vertices 
n. Figure 4 shows that the 3-dimensional Hiickel results closely 
parallel the ab initio results. Obviously, quantitative comparisons 
between the two methods are impossible. In constructing Figure 
4, we chose scales for the two sets of data that make end points 
of the two curves fall in about the same place. Remarkably similar 
trends through the two series follow the oft-noted empirically 
observed trend of increasing stability of B,,Hn2- with polyhedron 
size n.20 

Total energies from geometry-optimized AM1 and ab initio 
SCF-MO (STO-3G) calculations are available for four different 
isomeric structures of B12H1z2-: regular icosahedron ( Z h ) ,  icosa- 
hedron (&,), cuboctahedron (oh), and bicapped pentagonal prism 

(18) Fuller, D. J.; Kepert, D. L. Inorg. Chem. 1982, 21, 163; Polyhedron . .  
1983, 2, 749. 

(19) Ott, J.  J.; Gimarc, B. M. J.  Compur. Chem. 1986, 7, 673. 
(20) Housecroft, C. E.; Wade, K. Inorg. Chem. 1983, 21, 1391. 
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Figure 5. Relative energies of B12H1z2- isomers as obtained by (a) ob 
initio calculations, (b) AM1 semiempirical SCF, and (c) 3-dimensional 
Hiickel theory. The three methods give the sameorder of relative stabilities 
Of the four isomers: I h  > D3h > oh > Dsh. 

(DSh).” Figure 5 compares relative energies of these structures 
as determined by ab initio, AM1, and 3-dimensional Hiickel 
methods. Results from the three methods agree qualitatively 
through this series, with the regular icosahedron being the most 
stable and the bicapped pentagonal prism the least stable. 

Still another comparison of ab initio and 3-dimensional Hiickel 
methods is among calculated charge densities on the borons of 
B,H,Z- polyhedra, and these are given in Figure 6. The ab initio 
results are all-electron Mulliken net atom  population^;^^ the 
3-dimensional Hiickel results are Coulson charge densities. Since 
the ab initio calculations include hydrogen substituents and the 
larger part of the extra electron charge is distributed over the 
more electronegative hydrogens, the absolute values of the 
calculated charges on the borons are considerably smaller than 
those from the Hiickel calculations, in which hydrogen substituents 
are ignored. For the regular octahedron and regular icosahedron, 
n = 6 and 12, respectively, all atoms are equivalent, and therefore 
all charges are equal. Each of the other polyhedra has at least 
two different sets of equivalent atoms, and in the cases of n = 5, 
7 ,8 ,9 ,  and 10, the two models agree on the relative order or size 
of negative charge. The n = 1 1  example is more complicated 
because the low symmetry of this polyhedron exhibits five different 
kinds of sites, each of which may be expected to have a different 
charge. Ab initio and 3-dimensional Hiickel results agree that 
the two four-coordinate sites (2 and 3) should carry the largest 
negative charges. One can argue from traditional valence theory 
that these sites, which have fewest neighbors with which electrons 
must be shared, should have the largest electron densities. 
Similarly, the unique six-coordinate site ( l ) ,  which has the largest 
number of neighbors, would be expected to have the smallest 
electron density which is, indeed, the result of the ab initio 
calculations. The 3-dimensional Hiickel results give site 1 only 
the second smallest charge. If one has reservations concerning 
the reliability of 3-dimensional Hiickel results, keep in mind the 
problems associated with limited basis set ab initio calculations 
which other experience shows may be very sensitive to the choice 
of the basis set. The n = 1 1  case is a particularly tough test for 
both methods. The rule of topological charge stabilization makes 
use of relative charges on the vertices of homoatomic clusters to 

(21) Gimarc, B. M.; Warren, D. S.; Ott, J. J.; Brown, C. Inorg. Chem. 1991, 
30, 1598. 
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Figure 6. Comparisons of calculated charge densities at borons in closo- 
boranes, BnHn2-, as obtained from 3-dimensional Hiikel theory and from 
ab initio calculations at the STO-3G level (values in parentheses). The 
ab initio values are smaller because much of the charge is distributed 
over the exo-hydrogens which are neglected in the 3-dimensional Hackel 
model. 
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Figure 7. Octahedral cluster MO energy levels as functions of 6a = k& 
the difference in Coulomb integrals for radial and tangential AOs. 
Bonding orbitals have negative energies; antibonding orbitals are positive. 

predict relative stabilities of positional isomers of isoelectronic, 
isostructural heteroatomic analogs.22 

Applications to Transition Metal Clusters 
The polyhedral skeletal electron pair approach presented by 

Mingos and Wade provides a simple way to understand the 
structural diversity of various polynuclear molecules of both main 

(22) Ott, J. J.; Gimarc, B. M. J.  Am. Chem. SOC. 1986, 108, 4303. 
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Figure 8. Capped square pyramidal MO energy levels as functions of the 
difference in Coulomb integrals 6a between radial and tangential A&. 

group and transition metal atoms. Teo and co-workers developed 
an alternative qualitative method to deal with the same theme.23 
Accurate MO calculations have been reported for many individual 
clusters. In this section we use 3-dimensional Hiickel theory to 
explain the structural characters shown by transition metal 
clusters. 

We assume that the transition metal atom in a cluster, like the 
main group atom, has three AOs that are involved in cluster 
bonding. This assumption is ensured by the famous isolobal 
p r i n ~ i p l e . ~ ~ - ~ ~  The three AOs consist of one radial orbital and a 
degenerate pair of tangential orbitals. The relative energies or 
Coulomb integrals a~ and CYT for radial and tangential orbitals, 
respectively, may be different from metal to metal and perhaps 
from ligand to ligand. Therefore we admit the parameter 6a = 
CXR - CYT = kfl, such that U R  + 2aT = 0. In addition, d-type 
orbitals in transition metals are involved in weaker bonding than 
s- or ptype orbitals of main group atoms, so for transition metal 
clusters, we assume that direct interactions among d orbitals can 
be neglected and that any of their effects can be included through 
changes in Coulomb integrals (a) of s and p orbitals. For a 
particular polyhedron, the fist-order correction to the MO energy 
levels is largely proportional to the change of Coulomb integrals. 
Therefore it is reasonable to focus only on the difference of 
Coulomb integrals and its effect on the electronic structure and 
thereby the properties of transition metal clusters. As a test of 
3-dimensional Hiickel theory, we consider here 6-atom clusters 
in octahedral, capped square pyramid, trigonal prism, and 
pentagonal pyramid structures. 

A. Octahedral Clusters. Octahedral structures are common 
among transition metal clusters. Some examples have numbers 
of pairs of cluster bonding electrons that differ from n + 1 = 7: 

3-Dimensional Hiickel theory can be used to explain why clusters 
with these numbers of electron pairs are stable. For a stable 
~~ 

(23) Teo,B.K.Inorg. Chem.1984,23,1251. Teo,B.K.;Longoni,G.;Chung, 

(24) Elian, M.; Chen, M. M. L.; Mingos, D. M. P.; Hoffmann, R. Inorg. 

(25) Hoffmann, R. Angew. Chem., Inr. Ed.  Engl. 1982, 21, 711. 

F. R. K. Inorg. Cham. 1984, 23, 1257. 

Chem. 1976, 15, 1148. 
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Figure 9. Trigonal prism MO energy levels as functions of ba. 

structure, the cluster bonding electrons completely fill the bonding 
MOs while nonbonding and antibonding MOs are empty. As a 
variable parameter we use the difference between Coulomb 
integrals for radial and tangential orbitals: 6a = (YR - (rT = kp. 
Figure 7 plots calculated energy levels of MOs of the octahedron 
as functions of k8. Bonding MOs have negative energies; 
antibonding orbital energies are positive. The diagram shows 
that, for -68 I 6a I + 38, 7 electron pairs completely fill the 
bonding MOs. For +38 I 6a I + 68, it takes 9 pairs to fill the 
bonding levels. For 6a 1 + 68, 6 pairs fill the bonding levels. 

B. Capped Square Pyramidal Clusters. The complex Os6Hz- 
(C0)ls is an example of a triangular facecappedsquare pyramidal 
cluster with 7 cluster electron pairs. Figure 8 displays MO 
energies as functions of 6a for the capped square pyramid. For 
-28 I 6a I 68,7 electron pairs occupy the bonding orbitals and 
all antibonding orbitals are vacant. For -68 I 6a I-28, it takes 
9 electron pairs to fill completely the bonding MOs. 

C. Trigonal Prism Clusters. Examples of trigonal prism 
clusters are as follows: 

no. of cluster electron pairs known trigonal prism clusters 

I 
9 

Figure 9 shows how trigonal prism MO energies vary with 6a. 
For +5@ I 6a I +8&7 electron pairs completely fill the bonding 
MOs. For -38 S 6a I +5@, the bonding orbitals are filled by 
9 electron pairs. 

D. Pentagonal Pyramid Clusters. No clusters of pentagonal 
pyramidal shape are known. Figure 10 shows how MO energies 
change with 6a. In the interval -58 I 6a I +5@, it takes 8 pairs 
to fill completely all bonding MOs. Previous examples suggest 
that this range of 6a is the most important one for transition 
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Figure 10. Pentagonal pyramid MO energy levels as functions of ba. 

metal clusters. Therefore we predict that if a pentagonal pyramid 
cluster is ever prepared, it will most likely contain 8 cluster electron 
pairs. 

Conclusions 

In the applications we have described, the 3-dimensional Hiickel 
method has successfully selected the correct deltahedral structures 
from among a set of plausible polyhedra for the closo-boranes, 
B,H,2-. Each of the favored structures was found to have n + 
1 bonding orbitals, confirming the observed rule that these 
structures contain n + 1 skeletal electron pairs. The simple Htickel 
method projects a trend of increasing stability with larger 
polyhedral size n, in agreement with experimental and ab initio 
results. Among a group of four isomeric structures for n = 12 
for which ab initio energies have been reported, the three- 
dimensional Htickel theory produces the same order of stabilities. 
Trends in calculated charge densities agree rather well with those 
based on ab initio wave functions. Finally, for a set of six-atom 
transition metal polyhedra, the introduction of an adjustable 
parameter 6a, the difference between Coulomb integrals for radial 
and tangential orbitals, provides a means for rationalizing different 
numbers of skeletal bonding electron pairs that have been proposed 
for clusters that are known to have these structures. 

The virtue of Hiickel theory lies in its stark simplicity. Its 
success does not depend on astute choices of calibration param- 
eters, basis sets, or the extent of electron correlation corrections. 
The successful descriptions of cluster property trends by 3-di- 
mensional Hiickel theory are results of molecular connectivity 
and electron count, two very simple and chemically appealing 
concepts. 
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